Design Patterns - Facade Pattern

Facade pattern hides the complexities of the system and provides an interface to the client using which the client can access the system. This type of design pattern comes under structural pattern as this pattern adds an interface to existing system to hide its complexities.
This pattern involves a single class which provides simplified methods required by client and delegates calls to methods of existing system classes.
A Facade Pattern says that just "just provide a unified and simplified interface to a set of interfaces in a subsystem, therefore it hides the complexities of the subsystem from the client".
In other words, Facade Pattern describes a higher-level interface that makes the sub-system easier to use. Practically, every Abstract Factory is a type of Façade.
Example:
 A customer in a restaurant orders food from the menu, which is probably described in half a line. The order goes to the kitchen and the food comes back after a while. Simple! The customer doesn’t want to know who will cut the meat for how long will it be cooked and who is going to wash the dishes afterward. The customer just wants to eat a tasty meal that meets the expectations. Therefore, the menu serves as the facade to make it easier for the customer by avoiding the complexities coming from the kitchen or even the tasks that the waiter is assigned through this process.
Advantage of Facade Pattern
· It shields the clients from the complexities of the sub-system components.
· It promotes loose coupling between subsystems and its clients.
Example of Facade Pattern
Let's understand the example of facade design pattern by the above UML diagram.
UML for Facade Pattern:
[image: Facade Pattern UML]

Implementation
We are going to create a Shape interface and concrete classes implementing the Shape interface. A facade class ShapeMaker is defined as a next step.
ShapeMaker class uses the concrete classes to delegate user calls to these classes. FacadePatternDemo, our demo class, will use ShapeMaker class to show the results.
[image: Facade Pattern UML Diagram]

Step 1
Create an interface.
Shape.java
public interface Shape {
 void draw();
}
Step 2
Create concrete classes implementing the same interface.
Rectangle.java
public class Rectangle implements Shape {

 @Override
 public void draw() {
 System.out.println("Rectangle::draw()");
 }
}
Square.java
public class Square implements Shape {

 @Override
 public void draw() {
 System.out.println("Square::draw()");
 }
}
Circle.java
public class Circle implements Shape {

 @Override
 public void draw() {
 System.out.println("Circle::draw()");
 }
}
Step 3
Create a facade class.
ShapeMaker.java
public class ShapeMaker {
 private Shape circle;
 private Shape rectangle;
 private Shape square;

 public ShapeMaker() {
 circle = new Circle();
 rectangle = new Rectangle();
 square = new Square();
 }

 public void drawCircle(){
 circle.draw();
 }
 public void drawRectangle(){
 rectangle.draw();
 }
 public void drawSquare(){
 square.draw();
 }
}
Step 4
Use the facade to draw various types of shapes.
FacadePatternDemo.java
public class FacadePatternDemo {
 public static void main(String[] args) {
 ShapeMaker shapeMaker = new ShapeMaker();

 shapeMaker.drawCircle();
 shapeMaker.drawRectangle();
 shapeMaker.drawSquare();		
 }
}
Step 5
Verify the output.
Circle::draw()
Rectangle::draw()
Square::draw()

image1.jpeg
FacadePatternClient

“+main(): void

+blackberrySale(): void

+modeINo():void
+price():void

image2.jpeg
FacadePatternDemo.

Shape

+draw) : void

<<interface>>

creates

+main() : void

asks

ShapeMiaker

Circle

Rectangle

Square

sdraw) :

oid

sdraw() :void

+drawl) :void

~ircle : Shape
-rectangle : Shape
square: shape

+shapeMaker()
sdrawcircle() : void
+drawRectangle() : void
+drawsquaref) : void

